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Abstract
The traditional thermodynamic Bethe ansatz equations for the XXZ model at
|�| � 1 are derived within the quantum transfer matrix method. This provides
further evidence of the equivalence of both methods. Most importantly, we
derive an integral equation for the free energy formulated for just one unknown
function. This integral equation differs in physical and mathematical aspects
to the established ones. The single integral equation is analytically continued
to the regime |�| < 1.

PACS numbers: 0570, 0230R, 0550, 7110F, 0520

1. Introduction

The thermodynamics of one-dimensional solvable models is generally determined by the
solution to a set of so-called thermodynamic Bethe ansatz (TBA) equations [1]. Some lattice
spin models such as the XXZ chain and XYZ chain have also been treated by the quantum
transfer matrix (QTM) method [2–4,6], see also chapters 17 and 18 of [1]. Correlated electron
systems such as the t–J model and Hubbard model, have also been treated by the TBA and
QTM methods [7–12].

The equations obtained by the QTM approach are quite different from those of the
TBA. However, the numerical results of the two methods for the free energies are the same.
Mathematically the nonlinear integral equations presented in [1] and [6] share similarities
insofar as they can be interpreted as equations for dressed energies of elementary particles of
magnon and spinon type, respectively.

Recently, from the TBA stand point one of the authors (MT) [13] derived in the case of the
XXZ chain a simple integral equation for just one unknown function. This integral equation is
completely different in structure from those mentioned above. Here we aim at a derivation of
this equation in the QTM approach providing a more explicit as well as unified understanding
of the structures and involved functions.

To be definite, we first consider the region � � 1,

H = −J
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The TBA equations for this model at temperature T are called the Gaudin–Takahashi
equations, [14, 15]:

ln η1(x) = 2πJ sinh φ

T φ
s(x) + s ∗ ln(1 + η2(x))

ln ηj (x) = s ∗ ln(1 + ηj−1(x))(1 + ηj+1(x)) j = 2, 3, . . .

lim
l→∞

ln ηl

l
= 2h

T
.

(2)

Here we put

� = cosh φ Q ≡ π/φ, s(x) = 1

4

∞∑
n=−∞

sech

(
π(x − 2nQ)

2

)

s ∗ f (x) ≡
∫ Q

−Q

s(x − y)f (y) dy.

(3)

The free energy per site is

f = 2πJ sinh φ

φ

∫ Q

−Q

a1(x)s(x) dx − T

∫ Q

−Q

s(x) ln(1 + η1(x)) dx

a1(x) ≡ φ sinh φ/(2π)

cosh φ − cos(φx)
.

(4)

From this equation Takahashi [13] derived

u(x) = 2 cosh

(
h

T

)
+
∮
C

φ

2

(
cot

φ

2
[x − y − 2i] exp

[
− 2πJ sinh φ

T φ
a1(y + i)

]

+ cot
φ

2
[x − y + 2i] exp

[
− 2πJ sinh φ

T φ
a1(y − i)

])
1

u(y)

dy

2π i
(5)

where the free energy is given by

f = −T ln u(0). (6)

The contour C is an arbitrary counterclockwise closed loop around 0 where 2nQ, n �= 0 and
±2i + 2nQ should lie outside of this loop. Furthermore, this loop should not contain zeros
of u(y). It is expected that u(y) has no zero in the region |Im y| � 1. We show that these
equations can be derived in the QTM approach.

2. Quantum transfer matrix and fusion hierarchy models

The QTM for this model is equivalent to that of the diagonal-to-diagonal transfer matrix of
the six-vertex model which is a staggered or inhomogeneous row-to-row transfer matrix, see
below. The partition function Z ≡ Tr exp(−H/T ) is given by

Z =
∑
{σ }

N∏
j=1

M∏
i=1

A(σ2i+j,j σ2i+j+1,j ; σ2i+j,j+1σ2i+j+1,j+1)

A(σ1σ2; σ ′
1σ

′
2) =




a 0 0 0
0 c b′ 0
0 b c 0
0 0 0 a




a = exp

(
− J�

2MT

)
sinh

(
J

2MT

)
b = exp

( −h

MT

)

b′ = exp

(
h

MT

)
c = exp

(
− J�

2MT

)
cosh

(
J

2MT

)
.

(7)
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Then in the case N = 2M × integer, we have

Z = Tr TN

T (σ1, σ2, . . . , σ2M; σ ′
1, σ

′
2, . . . , σ

′
2M)

≡ A(σ1σ2; σ ′
2Mσ ′

1)A(σ3σ4; σ ′
2σ

′
3) . . . A(σ2M−1σ2M; σ ′

2M−2σ
′
2M−1).

The eigenvalue problem of this transfer matrix is a special case of the inhomogeneous six-vertex
model on the square lattice.

Consider an inhomogeneous six-vertex model with the following column-dependent
Boltzmann weights:

al = ρlh(v + vl + η)

bl = ρlω
−1h(v + vl − η)

b′
l = ρlωh(v + vl − η)

cl = ρlh(2η) l = 1, . . . , L.

(8)

Here L is the number of columns, h(u) is u, sin(u) or sinh(u) depending on the anisotropy
parameter. The transfer matrix T (v) acts in a 2L-dimensional space,

T = Tr R1(σ1, σ
′
1)R2(σ2, σ

′
2) . . .RL(σL, σ

′
L)

Rl(++) =
(
al 0
0 bl

)
Rl(+−) =

(
0 0
cl 0

)

Rl(−+) =
(

0 cl
0 0

)
Rl(−−) =

(
b′
l 0

0 al

)
.

(9)

The space is divided into subspaces characterized by the number of down spins k. Without
loss of generality we can put k � L/2. In this subspace we can construct Bethe-ansatz
wavefunctions with k parameters u1, . . . , uk ,

|'〉 =
∑

f (y1, y2, . . . , yk)σ
−
y1
σ−
y2

. . . σ−
yk

|0〉

f (y1, y2, . . . , yk) =
∑
P

A(P )

k∏
j=1

F(yj ; uPj )

F (y; u) ≡ ωy

y−1∏
l=1

h(u + vl + η)

L∏
l=y+1

h(u + vl − η)

A(P ) = ε(P )
∑
j<l

h(uPj − uP l − 2η).

(10)

Imposing periodic boundary conditions the Bethe ansatz equations (BAE) take the form

ϕ(uj + η)

ϕ(uj − η)
= −ω−L

k∏
m=1

h(uj − um + 2η)

h(uj − um − 2η)

ϕ(v) =
L∏

l=1

ρlh(v + vl).

(11)

The corresponding eigenvalue of the transfer matrix is given by

T1(v) = ω−L+kϕ(v − η)
Q(v + 2η)

Q(v)
+ ωkϕ(v + η)

Q(v − 2η)

Q(v)

Q(v) =
k∏

j=1

h(v − uj ).

(12)
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In order to solve the diagonal-to-diagonal transfer matrix we have to consider an
inhomogeneous six-vertex model the Boltzmann weights of which are given by

al = cl = 1 bl = b′
l = 0 for even l

al = exp

(
− J�

2MT

)
sinh

(
J

2MT

)
bl = exp

( −h

MT

)

b′
l = exp

(
h

MT

)
cl = exp

(
− J�

2MT

)
cosh

(
J

2MT

)
for odd l.

(13)

The conditions (8) are satisfied if we put

L = 2M ω = exp

(
h

MT

)
v = 0

h′(2η)
h′(0)

= sinh( J�
MT

)

sinh( J
MT

)
(14)

and

ρl = 1/h(2η) vl = η for even l

ρl =
√
bb′

h(vl − η)

h(vl + η)

h(vl − η)
= a√

bb′ = exp

(
− J�

2MT

)
sinh

(
J

2MT

)
for odd l.

(15)

Putting η + v1 = 2αM we have

ϕ(v) =
(

h(v + η)h(v + 2αM − η)

h(2η)h(2αM − 2η)

)M
. (16)

The largest eigenvalue belongs to the k = M sector. The BAE for uj , j = 1, . . . ,M , are

ϕ(uj + η)

ϕ(uj − η)
= −e−2h/T

M∏
m=1

h(uj − um + 2η)

h(uj − um − 2η)
. (17)

The corresponding eigenvalue is given by

T1(v) = e−h/T ϕ(v − η)
Q(v + 2η)

Q(v)
+ eh/T ϕ(v + η)

Q(v − 2η)

Q(v)
. (18)

Due to the BAE (17), the eigenvalue T1(x) is an entire function in the complex plane. The free
energy per site is given by

f = −T lim
M→∞

ln T1(0). (19)

The matrix T1(v) can be embedded into a more general family of matrices provided by the
fusion hierarchy [17],

Tj (v) ≡
j∑

l=0

e−(j−2l)h/T ϕ(v − (j − 2l)η)
Q(v + (j + 1)η)Q(v − (j + 1)η)

Q(v + (2l − j + 1)η)Q(v + (2l − j − 1)η)
. (20)

The eigenvalues Tj (v) as functions of v are all entire in the complex plane. It is easily seen
that the following functional relations hold [17]:

Tj (v + η)Tj (v − η) = ϕ(v + (j + 1)η)ϕ(v − (j + 1)η) + Tj+1(v)Tj−1(v)

T0(v) ≡ ϕ(v).
(21)
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3. Derivation of the Gaudin–Takahashi equation

For � > 1 we put

h(u) = sin u η = iφ̃/2 φ̃ = cosh−1

(
sinh(J�/2MT )

sinh(J/2MT )

)

αM = i

2
tanh−1

(
tanh φ̃ tanh

J�

2MT

)
.

(22)

In the limit of M → ∞ we have

φ̃ = φ MαM = iJ sinh φ/(4T ). (23)

We transform the parameter v to x ≡ iv/η. Then equations (16) and (20) turn into

Q(x) =
M∏
j=1

sin
φ̃

2
(x − xj ) ϕ(x) =

(
sin φ̃

2 (x + i) sin φ̃

2 (x − (1 − 2uM)i)

sinh φ̃ sinh φ̃(1 − uM)

)M

uM = αM/η xj = iuj/η

(24)

Tj (x) ≡
j∑

l=0

e−(j−2l)h/T ϕ(x − (j − 2l)i)
Q(x + (j + 1)i)Q(x − (j + 1)i)

Q(x + (2l − j + 1)i)Q(x + (2l − j − 1)i)
. (25)

These functions are all entire in the complex plane. Now we introduce a modified eigenvalue
of Tj (x)

T̃j (x) ≡ Tj (x)

(
sinh(φ̃) sinh φ̃(1 − uM)

sin φ̃

2 (x + (j + 1)i) sin φ̃

2 (x − (j + 1 − 2uM)i)

)M

. (26)

In contrast to the entire function Tj (x), T̃j (x) has poles of order M at
x = 2nQ + uM i ± (1 + j − uM)i. On the other hand, it has constant asymptotics

T̃j (±i∞) = sinh(j + 1)h/T

sinh h/T
. (27)

From (21), we can find the following functional relation for T̃j (x):

T̃j (x + i)T̃j (x − i) = bj (x) + T̃j−1(x)T̃j+1(x) (28)

where we have defined

bj (x) =
(

sin φ̃

2 (x + (j + 2uM)i) sin φ̃

2 (x − j i)

sin φ̃

2 (x + j i) sin φ̃

2 (x − (j − 2uM)i)

)M

. (29)

Note that T̃0(x) = 1 and bj (x), T̃j (x) has poles at x = 2nQ + uM i ± (j − uM)i and
x = 2nQ + uM i ± (j + 1 − uM)i, respectively.

We define

Yj (x) = T̃j−1(x)T̃j+1(x)

bj (x)
j = 1, 2, . . . . (30)

For these functions the following relations stand:

Y1(x − i)Y1(x + i) = 1 + Y2(x)

Yj (x + i)Yj (x − i) = (1 + Yj−1(x))(1 + Yj+1(x)) j = 2, 3, . . .

lim
l→∞

ln Yl(x)

l
= 2h

T
.

(31)
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As Yj (x), j = 2, 3, . . . , has no pole or zero in −1 � Im x � 1, we find

ln Yj (x) = s ∗ (ln(1 + Yj−1) + ln(1 + Yj+1)) j � 2. (32)

For Y1(x) one must be careful that it has poles in −i, (1 − 2uM)i. Using

T̃2(x + i)T̃2(x − i) = b2(x)(1 + Y2(x)) (33)

and T̃2(x) has no zero or pole at −1 � Im x � 1, we have

ln T̃2(x) = s ∗ (ln b2(x) + ln(1 + Y2(x))). (34)

Using Y1(x) = T̃2(x)/b1(x) we have

ln Y1(x) = − ln b1(x) + s ∗ ln b2(x) + s ∗ ln(1 + Y2(x)). (35)

In the limit of M → ∞, the function bj (x) can be simplified to

bj (x) = lim
M→∞

exp

[
M ln

sin φ̃

2 (x + (j + 2uM)i) sin φ̃

2 (x − j i)

sin φ̃

2 (x + j i) sin φ̃

2 (x − (j − 2uM)i)

]

= exp

(
−2πJ sinh φ

φT
aj (x)

)
aj (x) ≡ φ sinh jφ/(2π)

cosh jφ − cos(φx)
(36)

which has singularities at x = 2nQ ± j i. In the limit of M → ∞ equations (35), (32), (31)
are identical to (2). Substituting

ln T̃1(x) = s ∗ ln[(1 + Y1(x))/b1(x)] (37)

into (19) we have (4). Then the Gaudin–Takahashi equations are derived from the QTM method
(see also the treatment in [16, 17] for related models).

Consider the M → ∞ limit of the functions bj (x), T̃j (x) as

uj (x) ≡ lim
M→∞

T̃j (x). (38)

Then from (28) we have the relation

u1(x + i)u1(x − i) = b1(x) + u2(x). (39)

Note also the asymptotics u1(±i∞) = 2 cosh h/T . We may assume the functions u1(x)

and u2(x) have similar singularities at x = 2nQ ± 2i and x = 2nQ ± 3i, respectively. If
we write (39) as

u1(x + i) = b1(x)/u1(x − i) + u2(x)/u1(x − i) (40)

the LHS has singularities at x = i,−3i in the fundamental region (|Re x| � Q). The first term
of the RHS has singularities at x = i,−i, 3i and the second term at x = 3i,−3i − i. Then
following the method in [13], we get an integral equation for u1(x),

u1(x) = 2 cosh h/T +
∮
C

φ

2

(
cot

φ

2
[x − y − 2i]b1(y + i) + cot

φ

2
[x − y + 2i]b1(y − i)

)

× 1

u1(y)

dy

2π i
. (41)

From the explicit expression of u1(x) (36), we see that the integral equation (41) is identical
to the one obtained in [13]. The free energy is given by

f = −T ln u1(0). (42)



Letter to the Editor L193

4. Case ∆ < 1

In this case we have

h(u) = sinh u η = iθ̃/2 θ̃ = cos−1

(
sinh(J�/2MT )

sinh(J/2MT )

)

αM = i

2
tanh−1

(
tan θ̃ tanh

J�

2MT

)
.

(43)

In the limit of M → ∞ we have

θ̃ = cos−1 � MαM = iJ sin θ/(4T ). (44)

Putting x = iv/η we obtain

Q(x) =
M∏
j=1

sinh
θ̃

2
(x − xj ) ϕ(x) =

(
sinh θ̃

2 (x + i) sinh θ̃
2 (x − (1 − 2uM)i)

sin θ̃ sin θ̃ (1 − uM)

)M

. (45)

Kuniba et al [17] succeeded in deriving the Takahashi–Suzuki equations [18] for the
thermodynamics of the XXZ model at h = 0, |�| < 1. The functions

T̃j (x) ≡ Tj (x)

(
sin(θ̃) sin θ̃ (1 − uM)

sinh θ̃
2 (x + (j + 1)i) sinh θ̃

2 (x − (j + 1 − 2uM)i)

)M

(46)

are all periodic with periodicity 2p0i. We have relations for T̃1(x) and T̃2(x)

T̃1(x + i)T̃1(x − i) = b1(x) + T̃2(x) (47)

with

b1(x) =
(

sinh θ̃
2 (x + (1 + 2uM)i) sinh θ̃

2 (x − i)

sinh θ̃
2 (x + i) sinh θ̃

2 (x − (1 − 2uM)i)

)M

. (48)

T̃1(x) satisfies

T̃1(±∞) = 2 cosh h/T . (49)

By these two equations we can determine T̃1(x) in the limit of M → ∞. In this limit b1(x) is

b1(x) = exp

(
−2πJ sin θ

θT
a1(x)

)
a1(x) ≡ θ sin θ/(2π)

cosh(θx) − cos θ
. (50)

We can assume that T̃1(x) is expanded as follows:

T̃1(x) = 2 cosh

(
h

T

)
+

∞∑
j=1

∑
n

cj

(x − 2np0i − 2i)j
+

∞∑
j=1

∑
n

cj

(x − 2np0i + 2i)j
. (51)

Consider the contour integral around x = i giving the coefficients cj

cj =
∮

(x − i)j−1b1(x)

T̃1(x − i)

dx

2π i
=
∮

yj−1b1(y + i)

T̃1(y)

dy

2π i
. (52)

The first sum of the RHS of (51) is
∞∑
j=1

∮ ∑
n

b1(y + i)

(x − 2np0i − 2i)j
yj−1

T̃1(y)

dy

2π i
=
∮ ∑

n

b1(y + i)

x − y − 2np0i − 2i

1

T̃1(y)

dy

2π i

=
∮

θ

2
coth

θ

2
(x − y − 2i) exp

[
−2πJ sin θ

T θ
a1(y + i)

]
1

T̃1(y)

dy

2π i
. (53)
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The second sum is calculated in a similar way. Thus we find

u(x) = 2 cosh

(
h

T

)
+
∮
C

θ

2

(
coth

θ

2
[x − y − 2i] exp

[
− 2πJ sin θ

T θ
a1(y + i)

]

+ coth
θ

2
[x − y + 2i] exp

[
− 2πJ sin θ

T θ
a1(y − i)

])
1

u(y)

dy

2π i
(54)

and the free energy is given by

f = −T ln u(0). (55)

Apparently these equations are analytical continuations of (5) and (6) if we replace φ by iθ .
Then equation (5) treats the thermodynamics in a unified way.
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